Scalable Logging Algorithm for in-Memory Database Systems

Henry Liu, Justin Kaashoek, Siye Zhu

Database Management Systems

OLTP (Online Transaction Processing)

- ATM
- Online Shopping
- Retail Sales
- Financial Transaction

How to log?

- The algorithm must be more scalable and efficient than current algorithms
- Serial logging
- Batch logging
- Parallel logging

- If a transaction is dependent on another transaction, they must be logged in order
- The logging algorithm must account for these dependencies!

Serial Logging

- The easiest solution to the dependency problem: log transactions in order
- Each transaction acquires a unique *Log Sequence Number* (LSN) at commit time.

Optimizing Serial Logging

Batch Logging

- With serial logging, each transaction needs an LSN from the Global LSN
- Quickly becomes bottleneck with large number of transactions

Batch Logging

Batch logging provides one solution to this problem by having multiple loggers with multiple *local* LSNs instead of one global LSN. This removes the bottleneck

Batch Logging

- Assume dependencies between • loggers
- Sync before returning to user •
- Our implementation: Flush all loggers when one becomes full
- Drawback: high latency

time

Batch Logging

Serial Logging

Transaction Time
Operations
Log Time
Wait Time
Commit

time

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

Independent Logging?

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

Independent Logging? YES

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

Independent Logging? YES

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

Independent Logging? YES No

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

Independent Logging? YES No

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

- No dependency
- RAW (Read After Write)
- WAW (Write After Write)
- WAR (Write After Read)

Independent Logging? YES NO NO YES

Parallel Logger

I SN	Txn ID	Data Tuple	Dependency info			
2011						
Logger 1						
Wait Buffer 1						
Logger 2						
Wait Buffer 2						

25

Parallel Logger

LSN	Txn ID	Data Tuple	Dependency info			
Logger 1						
1	1	С	[0, 0]			
Wait Buffer 1						
11	2	Α	[4 4]			
11	3	В	[',']			
Logger 2						
1	2	В	[0,0]			
Wait Buffer 2						

26

Parallel Logger

LSN	Txn ID	Data Tuple	Dependency info		
Logger 1					
1	1	С	[0, 0]		
11	3	Α	[1,1]		
		В			
Wait Buffer 1					
Logger 2					
1	2	В	[0,0]		
Wait Buffer 2					

27

Scalability and Results

Batch Logging Results

Conclusion and Future Work

Accomplishments

- Implemented serial, batch, and parallel logging
- Determined areas of improvement
- Tested scalability and efficiency

• Future Goals

- Gather results for parallel logging
- Other optimizations for serial logging
- Log recovery
- Publish paper

Special thanks to...

- Our mentor, Xiangyao Yu
- Prof. Srini Devadas for his help and guidance
- The PRIMES program

Thank you!